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General Base Catalysis and Evidence 
for a Sulfurane Intermediate in the Iodine 
Oxidation of Methionine 

Sir: 

The oxidation of methionine by iodine to give the cyclic 
sulfimine dehydromethionine (5-methylisothiazolidine-3-
carboxylic acid) is catalyzed by general bases and gives a 
nonlinear Br^nsted plot which breaks from a slope of — 1.0 to 
a slope of zero at approximately pKA = 2. This is interpreted 
as evidence for a mechanism involving stepwise proton transfer 
through a preassociation mechanism. At low concentration of 
buffer, the reaction is inversely dependent on the concentration 
of iodide ion. At high buffer concentration, the reaction rates 
exhibit a nonlinear dependence on iodide concentration which 
approaches an inverse-squared dependence. The observation 
of a simple inverse dependence at low buffer requires that 
diffusion apart of the iodosulfonium ion-iodide encounter 
complex (I) must be slow with respect to reduction of the 
complex through k-\ and ring closure through k0 (eq 1). The 

changeover to an inverse-squared dependence at high buffer 
requires a kinetically significant intermediate after the ring 
closure step. It is suggested that this intermediate is a tetra-
coordinate sulfurane. 

The iodine oxidation of sulfides proceeds through the initial 
formation of an iodosulfonium ion.1 Typically, this interme­
diate can be attacked by iodide ion, reversing the reaction, or 
by water to give the sulfoxide. A major unanswered question 
in nucleophilic reactions of these types is whether the attack 
occurs through an S^-like transition state or if a tetracoor-
dinate sulfurane is involved as an obligatory intermediate.2 In 
the iodine oxidation of methionine, the proximal amino group 
apparently traps the iodosulfonium ion intermediate faster 
than that intermediate is attacked by the solvent to give sulf­
oxide. In its simplest form, this mechanism predicts an in­
verse-squared dependence on the concentration of iodide ion: 
one inverse dependence as a result of the equilibrium to give 
triiodode ion and the second due to reversal of the oxidation 
process by attack of iodide on the iodosulfonium ion. The ob­
servation by us and others3 that this reaction shows a simple 
inverse dependence at low buffer concentrations requires that 
either attack be rate limiting or that free iodide in solution does 
not reduce the iodosulfonium ion intermediate. Since buffer 
catalysis is observed, it is unlikely that attack of iodine is rate 
limiting. Therefore, the rate constants for reversion of the io­
dosulfonium ion-iodide encounter pair back to starting ma­
terials (k-\) and the rate constant for ring closure (k0)

 must 
be faster than the rate constant for diffusion apart of the ion 
pair. Since the ion pair is not expected to be extraordinarily 
stable, this suggests that k-\ and k0 will also be faster than the 
rate constant for diffusion of 1 M buffer base up to the en­
counter pair. This requires that the buffer preassociate with 
the methionine-iodine complex before the oxidation step oc­
curs and that the catalysis occur through either a concerted 
or a stepwise-preassociation mechanism.4 While those two 
mechanisms can theoretically be distinguished based on their 
Brr̂ nsted behavior, the data do not rigorously exclude a linear 
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Figure 1. Br^nsted plot for general base catalysis of the iodine oxidation 
of methionine: aqueous solution. 25 0C, ionic strength 1.0 with KCl. The 
buffers shown are H2O, CFjCOO", (CHj)2AsOOH, H2PO4", 
CH3SOO-, (CH3)2AsOO-, and HPO4

2 - . The arrow indicates the upper 
limit for catalysis by HO - . Values of K\I<B were calculated from the 
nonlinear buffer plots using the method described by H. F. Gilbert and 
W. P. Jencks, J. Am. Chem.Soc. 99,7931 (1977). 
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Figure 2. Dependence of log £0bS<j for iodine oxidation of methionine on 
the quantity log (AT1 [I] + 1) where Ki is the equilibrium constant for the 
formation of triiodide ion: aqueous solution, 25 0C, ionic strength 1.0 with 
KCl, pH 4.85, acetic acid buffer at a total concentration of 0.7 M. The solid 
line was calculated for a break from a slope o f - 1 to - 2 . 

Br^nsted plot diagnostic of a concerted mechanism; however, 
they are most consistent with the curved Br^nsted plot ex­
pected for the stepwise-preassociation mechanism (Figure 
1). 

At high concentrations of buffer, the rates of reaction no 
longer show a simple inverse dependence on iodide concen­
tration and approach a curve of slope -2.0 (Figure 2). This 
means that the breakdown of an intermediate coming after the 
buffer-mediated step has become rate limiting. This inter­
mediate must contain the elements of dehydromethionine and 
iodide ion. Since the reaction goes to completion rather than 
to an equilibrium, the simplest explanation is that a tetra-
coordinate sulfurane is involved as an intermediate and that 
the breakdown of this sulfurane has become rate limiting. This 
is the first kinetic evidence that requires a sulfurane as an 
obligatory intermediate in a nucleophilic substitution reaction 
of this type.5 

If a sulfurane intermediate is involved, then the proton 

transfer in the buffer-mediated step must be transfer to and 
from this sulfurane. If the assignment of a stepwise mechanism 
is correct, then the break in the Br^nsted plot at about pKa = 
2 reflects an upper limit for the pKd of this species. The driving 
force for the catalysis that is observed is the generation of an 
intermediate with a lifetime sufficiently short so that it is not 
at proton or diffusional equilibrium with the solvent. This is 
consistent with the rules defined for "enforced" mechanisms 
of catalysis as described by Jencks4 and this work represents 
the first extension of these rules to systems outside of the 
framework of carbonyl addition-elimination reactions, and 
as such supports the generality of the concept. 
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Cyclonerodiol Biosynthesis and the Stereochemistry 
of the Conversion of Farnesyl to 
Nerolidyl Pyrophosphate 

Sir: 

Allylic pyrophosphates play a central role in the biosynthesis 
of isoprenoid metabolites. These substances may undergo a 
variety of transformations (Scheme I), including direct dis­
placements (SN2 type, pathway a), allylic displacements (SN2' 
type, pathway b), and allylic transpositions (allylic rear­
rangement, pathway c). The class of direct displacements has 
been the most thoroughly studied, and is represented by the 
prenyl transferase catalyzed chain elongation reactions 
whereby successive units of isopentenyl pyrophosphate are 
added to the primary allylic pyrophosphates dimethallyl, 
geranyl, or farnesyl pyrophosphate.1 These processes have been 
shown to involve inversion of configuration at C-I of the allylic 

Scheme I 
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